# Experience of EW and BSM physics at HERA and lessons for EIC

Elisabetta Gallo (DESY and UHH)





CLUSTER OF EXCELLENCE
QUANTUM UNIVERSE

(A personal recollection and selection of topics)

# Electroweak and BSM physics at the EIC, 6/5/2020

Elisabetta Gallo (DESY)

# HERA (1992-2007)



### First F<sub>2</sub> presented by H1 at Durham 1993



#### Diffractive events discovered by ZEUS, DESY seminar 1993



- HERA experiments were built for high Q<sup>2</sup> physics, but adapted very well to lower Q<sup>2</sup> low x
- With HERA II a stronger electroweak program could be started and searches boosted
- At the end of HERA II we went back to low-x physics with  $F_L$



# Increasing the luminosity (i.e. HERA II)

#### Access to higher Q<sup>2</sup>

- Access to valence quark distribution at higher x in NC, xF<sub>3</sub>
- Electron vs positron running (endless discussions)
- More precise measurements of charged current
- Polarized beams
- Combination H1-ZEUS data (it started for xF<sub>3</sub>)
- LHC was getting closer -> PDFs for LHC, more exchange, HERAPDFs

#### More exotic searches

- Isolated leptons plus missing energy and large hadronic p<sub>T</sub>
- Multilepton events
- Leptoquarks
- FCNC
- Contact interactions

Triggered by observation in H1, no specific- related search

# NC/CC at high Q<sup>2</sup>

### Few words about ZEUS and H1 combinations



EPJ C75 (2015) 580

ZEUS and H1 combination is the main dataset for PDFs fitters



- xFitter, open-source tool originally started to fit PDFs at HERA
- Now used also for LHC experiments (EIC?)

- Unless specified the plots I am going to show are based on the latest combined data
- And compared to HERAPDF2.0: based on data taken 1994-2007, 2927 points combined to 1307, 21 HERA I data samples, 20 HERA II data samples NC+CC
- NC: 0.045< Q<sup>2</sup>< 50000 GeV<sup>2</sup>

$$6 \times 10^{-7} < x < 0.65$$

• CC: 200< Q<sup>2</sup>< 50000 GeV<sup>2</sup>

$$1.3 \times 10^{-2} < x < 0.40$$

### Polarization at HERA II



- Electrons/positrons get naturally transverse polarized (Solokov-Ternov effect)
- Spin rotators to change in long. polarization in the straight section before the experiments









$$P_e = \frac{N_R - N_L}{N_R + N_L}$$

- Polarization 30-40%
- Spin flip every 2-3 months
- Measured by three devices Tpol,Lpol and cavity
- Original aim was a precision of 1%, i.e. not contributing significantly to syst. errors



### Polarization at HERA II



- Compton scattering cross section depends on polarization
- Circularly polarized laser beam off the electron/positron beam
- Asymmetry
   measured from
   scattered gamma in
   special calorimeters



$$\frac{d^2\sigma}{dE\,d\phi} = \Sigma_0(E) + S_1\Sigma_1(E)\cos 2\phi + S_3P_Y\Sigma_{2Y}(E)\sin\phi + S_3P_Z\Sigma_{2Z}(E)$$

- TPOL: measured transverse polarization in straight West section, Sci-Tungsten e.m. calorimeter, +/- 1.9 % precision
- LPOL: measured longitudinal polarization in-between the HERMES spin rotators, compact Cherenkov crystal calorimeter, +/- 3.6% precision
- Note luminosity uncertainty: 1.8% ZEUS, 2.0% H1

# Charged Current events at HERA



- Kinematics of reconstructed from hadronic system
- Hadronic calorimeter resolution crucial





$$\frac{d\sigma_{unpolCC}^{e^{+}p}}{dQ^{2}dx} = \frac{G_{F}}{2\pi} \cdot \left(\frac{M_{W}^{2}}{M_{W}^{2} + Q^{2}}\right)^{2} \left[\overline{u}_{i}(Q^{2}, x) + (1 - y)^{2} d_{i}(Q^{2}, x)\right]$$

$$\frac{d\sigma_{\text{unpolCC}}^{e^-p}}{dQ^2dx} = \frac{G_F}{2\pi} \cdot \left(\frac{M_W^2}{M_W^2 + Q^2}\right)^2 \left[u_i(Q^2, x) + (1 - y)^2 \overline{d}_i(Q^2, x)\right]$$

- Both electron and positron running crucial
- e<sup>+</sup> p suppressed by (1-y)
- Give information on u,d valence density separately

### CC cross section





- Data important input to PDFs, i.e. uvalence and d-valence separation
- Complemented by W-charge asymmetry at the LHC these days, which is however at lower x

# CC polarized cross section



$$\frac{\mathrm{d}^2 \sigma_{CC}^{\pm}(P_e)}{\mathrm{d}x \mathrm{d}Q^2} = (1 \pm P_e) \frac{\mathrm{d}^2 \sigma_{CC}^{\pm}}{\mathrm{d}x \mathrm{d}Q^2}$$

 Textbook plot: the charged current cross section goes to zero for righthanded electrons, as predicted by the SM



# Neutral Current at high Q<sup>2</sup>



- Need electron identification at high angle, in the forward region, so optimized algorithm
- At high Q<sup>2</sup> the cross section (here expressed as reduced cross section) cannot neglect the xF<sub>3</sub> term



$$\tilde{\sigma}^{\pm} = \frac{d^2 \sigma^{\pm}}{dx dQ^2} \frac{Q^4 x}{2\pi \alpha^2 Y_+} = \tilde{F}_2^{\pm} \mp \frac{Y_-}{Y_+} x \tilde{F}_3^{\pm} - \frac{y^2}{Y_+} \tilde{F}_L^{\pm}$$

### NC+CC cross sections



- Textbook plot: at high  $Q^2 \sim M_Z^2$ ,  $M_W^{2}$ . become of the same strength
- Here shown with the QCD prediction with the HERAPDF2.0 fit
- In NC gamma-Z interference and Zexchange visible at very high Q<sup>2</sup>



### NC cross section



- Effect of Z-gamma interference clearly visible at high Q<sup>2</sup>
- Measuring e<sup>+</sup> and e<sup>-</sup> one can extract xF<sub>3</sub>, directly sensitive to the valence quark distribution

$$xF_3^{\gamma Z} = x/3(2u_v + d_v + \Delta)$$

• Integral=  $1.790\pm0.078$  (stat)+0.078 <sub>-0.100</sub> ~ 5/3 as predicted



### QCD fits — HERAPDF2.0

$$\begin{array}{rcl} xg(x) & = & A_g x^{B_g} (1-x)^{C_g} - A_g' x^{B_g'} (1-x)^{C_g'}, \\ xu_v(x) & = & A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1+E_{u_v} x^2\right), \\ xd_v(x) & = & A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ x\bar{U}(x) & = & A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}} x), \\ x\bar{D}(x) & = & A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}. \end{array}$$

- 14 parameters fit
- Starting scale
   Q<sup>2</sup>=1.9 GeV<sup>2</sup>
- HQs from RT VFNS
- 5 orders of magnitude in x,Q<sup>2</sup> fit
- Chi<sup>2</sup>/NDF=1357 /1131

#### PDFs extracted from these data



### Polarized neutral current cross sections



- Effect of polarization visible at very high Q<sup>2</sup>
- Direct observation of parity-violation in NC

$$egin{array}{lll} F_{2}^{L,R} &=& \sum_{q} [xq(x,Q^{2}) + xar{q}(x,Q^{2})] \cdot A_{q}^{L,R}, \ xF_{3}^{L,R} &=& \sum_{q} [xq(x,Q^{2}) - xar{q}(x,Q^{2})] \cdot B_{q}^{L,R}. \ && \\ A_{q}^{L,R} &=& Q_{q}^{2} + 2Q_{e}Q_{q}(v_{e} \pm a_{e})v_{q})_{Z} + (v_{e} \pm a_{e})^{2}(v_{q}^{2} + a_{q}^{2})(\chi_{Z})^{2}, \ && \\ B_{q}^{L,R} &=& \pm 2Q_{e}Q_{q}(v_{e} \pm a_{e})a_{q})_{Z} \pm 2(v_{e} \pm a_{e})^{2}v_{q}a_{q}(\chi_{Z})^{2}, \end{array}$$

- Exploiting the polarization the u,d electroweak couplings to the Z can be determined, in quite a competitive way
  - Polarized F<sub>2</sub> constrains the vector couplings
  - Unpolarized xF<sub>3</sub> constrains the axial couplings
- Special QCD fits with EW parameters free

### Combined QCD+EW fit ZEUS-EW-Z

$$v_u = 1/2 - 4/3\sin^2\theta_W, \ a_u = 1/2$$



13+4 PDF fit ZEUS-EW-Z to constrain the Z to u,d couplings

$$v_d = -1/2 + 2/3\sin^2\theta_W, \ a_d = -1/2$$



Very competitive measurement - at least compared to Tevatron - and can constrain the sign

### Combined QCD+EW ZEUS-EW-S

- Dependence on  $\sin^2 \theta w$ :
  - in the Z propagator
  - In the G<sub>F</sub> coupling in CC
  - through the vector coupling of Z to the quarks
  - 13+1 parameter fit

$$\chi_Z = \frac{1}{\sin^2 2\theta_W} \frac{Q^2}{M_Z^2 + Q^2} \frac{1}{1 - \Delta R} \qquad G_F = \frac{\pi \alpha_0}{\sqrt{2} \sin^2 \theta_W M_W^2} \frac{1}{1 - \Delta R}$$

$$G_F = \frac{\pi \alpha_0}{\sqrt{2} \sin^2 \theta_W M_W^2} \frac{1}{1 - \Delta R}$$

- Precision not very high but other text-book plot
- Similar H1 fit with extraction of W mass in the t-channel (unique measurement)





# Very very high-x

- Let's suppose to have a very high Q<sup>2</sup> electron (reconstructed in the detector) and very high x, so that the jet disappears in the fwd region
- Reconstruct Q<sup>2</sup> from the electron and integrate cross section in x- from edge up to x=1

A. Caldwell <a href="https://indico.desy.de/indico/event/10523">https://indico.desy.de/indico/event/10523</a>









Uncertainties in PDFs at high-x still very high, these data at x>0.6

Elisabetta Gallo (DESY)

18

### Lessons learned

- Precision of scattered electron, hadronic jets is crucial in the whole kinematic range
- Combination H1-ZEUS was fundamental for precision PDFs and electroweak measurements in particular (first one in 2006 for xF<sub>3</sub>!)
- We did not invest enough probably in the polarization measurement at least at the beginning - its uncertainty as important as the luminosity uncertainty
- Very high x still very unknown region (crucial for searches at the LHC)
- Interaction with theory worked well at HERA, also crucial
- New ideas many years after HERA end (EW fits from 2016)
- Strong attention to PDFs from LHC community

# **Exotics**

## Leptoquarks

- Classical search at HERA, a resonance in x expected
- Early possible signal ~ 200-220 GeV observed with 1996 data by both H1 and ZEUS (at high y), not confirmed later with more statistics
- BRW model used to classify leptoquarks (still used now)
- Competitive limits set at that time, now LHC taking over
- Very modern subject these days for LQs coupling to 3rd generation, due to the B anomalies







Phys. Rev. D 86 (2012) 012005

### Quark radius and contact interactions

- HERA is the natural place to look for quark substructure.
- It would manifest a deviation from the predicted Q<sup>2</sup> dependence at high Q<sup>2</sup> with an additional quark form factor

$$\frac{d\sigma}{dQ^2} = \frac{d\sigma^{\text{SM}}}{dQ^2} \left(1 - \frac{R_e^2}{6} Q^2\right)^2 \left(1 - \frac{R_q^2}{6} Q^2\right)^2$$

• QCD fits repeated introducing additional quark radius  $R_q$  parameter

$$R_q^2 < (0.43 \cdot 10^{-16} \,\mathrm{cm})^2$$



# Isolated leptons and p<sub>T</sub>miss in H1

- Events with isolated electrons/muons and large transverse energy
- Main process in W radiation from a quark
- Excess found by H1 at high P<sub>T</sub><sup>X</sup> (large p<sub>T</sub> of the hadronic system), especially in e<sup>+</sup>p collisions
- At  $P_T^X > 25$  GeV 10 obs./2.92+/-0.49 exp. with the sample at that time (HERA I)
- Not confirmed by ZEUS, but of course we took it seriously and compared acceptance in a common kinematic range

#### PLB 561 (2003) 241





105 pb<sup>-1</sup>, e<sup>+</sup>p

# Isolated leptons and p<sub>T</sub>miss

- Later combination of all H1+ZEUS at the end of HERA in common phase space
- Possible interpretation: anomalous singletop production with anomalous FCNC u-t coupling or R-parity violation squark production
- Limits set on these couplings





| H1+ZEUS                               |                           | Data | SM          |   | SM  |        |   | Other SM |           |   |     |
|---------------------------------------|---------------------------|------|-------------|---|-----|--------|---|----------|-----------|---|-----|
| 1994–2007 $e^+p$ 0.59 ${\rm fb^{-1}}$ |                           |      | Expectation |   |     | Signal |   |          | Processes |   |     |
| Combined                              | Total                     | 53   | 49.8        | ± | 6.2 | 38.8   | ± | 5.9      | 11.1      | ± | 1.5 |
|                                       | $P_T^X > 25 \mathrm{GeV}$ | 23   | 14.0        | ± | 1.9 | 11.8   | ± | 1.9      | 2.2       | ± | 0.4 |
| 2.9 sigma H1 alone                    |                           |      |             |   |     |        |   |          |           |   |     |

1.8 sigma combined

# Multilepton 2e, 3e events events in H1

- Observation by H1 in events with 2e or 3e events
- A clear excess observed at high invariant mass of the two highesttransverse-energy electrons
- Mostly in positron
- Not confirmed by ZEUS







Possible BSM interpretation: doubly charged Higgs

# Multilepton events in H1+ZEUS

Combination of H1 and ZEUS data with complete dataset

with both electrons and muons in common phase space

- 7 events observed in positron-p collisions at high sum of the  $p_T$ , compared to 1.94 expected
- None observed in electron-p collisions
- But in general good agreement

 $3.13 \pm 0.26$ 

Data sample e<sup>+</sup>p (0.56 fb<sup>-1</sup>) e<sup>-</sup>p (0.38 fb<sup>-1</sup>) All (0.94 fb<sup>-1</sup>)

 At least in ZEUS it was crucial to have a precise MC for the background (GRAPE) and an expert on it

| Multi-Leptons at HERA $(0.94 \text{ fb}^{-1})$ |                         |                 |  |  |  |  |  |  |  |
|------------------------------------------------|-------------------------|-----------------|--|--|--|--|--|--|--|
| $\sum P_T > 100 \text{ GeV}$                   |                         |                 |  |  |  |  |  |  |  |
| a SM                                           | Pair Production (GRAPE) | NC DIS + QEDC   |  |  |  |  |  |  |  |
| $1.94 \pm 0.17$                                | $1.52 \pm 0.14$         | $0.42 \pm 0.07$ |  |  |  |  |  |  |  |
| $1.19 \pm 0.12$                                | $0.90 \pm 0.10$         | $0.29 \pm 0.05$ |  |  |  |  |  |  |  |

 $2.42 \pm 0.21$ 







 $0.71 \pm 0.10$ 

### Lessons learned

- Be open to unconventional signatures, not related to a particular BSM model
- Leptons identification crucial (also for tau leptons!)
- MC models for background very important
- Exchange between H1 and ZEUS and combined paper crucial
- Take any deviation seriously, new physics could be hidden in SM precise measurements

# Summary

Last fill 30/6/2007 at 23:30





- Picture taken at the party after the last fill
- You have all a new project to start in DIS

